New novel MIT's energy storage system

The new energy storage system of MIT, is a novel way to store energy especially from renewable sources like photovoltaic and wind turbines.
This new approach stores heat generated by excess electricity from solar, wind or other renewables, in large tanks of white hot molten silicon.The light emmited by the molten glowing metal is then converted into electricity when it's needed.It is estimated to be half the cost of pumped hydroelectric storage, which is the cheapest form of grid scale storage to date.

“Even if we wanted to run the grid on renewables right now we couldn’t, because you’d need fossil-fueled turbines to make up for the fact that the renewable supply cannot be dispatched on demand,” says Asegun Henry, the Robert N. Noyce Career Development Associate Professor in the Department of Mechanical Engineering. “We’re developing a new technology that, if successful, would solve this most important and critical problem in energy and climate change, namely, the storage problem.”

Henry and his colleagues have published their design today in the journal Energy and Environmental Science.

“Sun in a box”

Now, the researchers have outlined their concept for a new renewable energy storage system, which they call TEGS-MPV, for Thermal Energy Grid Storage-Multi-Junction Photovoltaics. They convert electricity generated by any renewable source, such as sunlight or wind, into thermal energy, via joule heating — a process by which an electric current passes through a heating element.

The system could be paired with existing renewable energy systems, such as solar cells, to capture excess electricity during the day and store it for later use. Consider, for instance, a small town in Arizona that gets a portion of its electricity from a solar plant.

The system would consist of a large, heavily insulated, 10-meter-wide tank made from graphite and filled with liquid silicon, kept at a “cold” temperature of almost 3,500 degrees Fahrenheit. A bank of tubes, exposed to heating elements, then connects this cold tank to a second, “hot” tank. When electricity from the town’s solar cells comes into the system, this energy is converted to heat in the heating elements. Meanwhile, liquid silicon is pumped out of the cold tank and further heats up as it passes through the bank of tubes exposed to the heating elements, and into the hot tank, where the thermal energy is now stored at a much higher temperature of about 4,300 F.

When electricity is needed, say, after the sun has set, the hot liquid silicon — so hot that it’s glowing white — is pumped through an array of tubes that emit that light. Specialized solar cells, known as multijunction photovoltaics, then turn that light into electricity, which can be supplied to the town’s grid. The now-cooled silicon can be pumped back into the cold tank until the next round of storage — acting effectively as a large rechargeable battery.

A storage key

The system would require tanks thick and strong enough to insulate the molten liquid within.The stuff is glowing white hot on the inside, but what you touch on the outside should be room temperature.

It is proposed that the tanks be made out of graphite. But there are concerns that silicon, at such high temperatures, would react with graphite to produce silicon carbide, which could corrode the tank.

To test this possibility, the team fabricated a miniature graphite tank and filled it with liquid silicon. When the liquid was kept at 3,600 F for about 60 minutes, silicon carbide did form, but instead of corroding the tank, it created a thin, protective liner.

The MIT team also found a way around another challenge: As the system’s tanks would have to be very large, it would be impossible to build them from a single piece of graphite. If they were instead made from multiple pieces, these would have to be sealed in such a way to prevent the molten liquid from leaking out. In their paper, the researchers demonstrated that they could prevent any leaks by screwing pieces of graphite together with carbon fiber bolts and sealing them with grafoil — flexible graphite that acts as a high-temperature sealant.

The researchers estimate that a single storage system could enable a small city of about 100,000 homes to be powered entirely by renewable energy.

“Innovation in energy storage is having a moment right now,” says Addison Stark, associate director for energy innovation at the Bipartisan Policy Center, and staff director for the American Energy Innovation Council. “Energy technologists recognize the imperative to have low-cost, high-efficiency storage options available to balance out nondispatchable generation technologies on the grid. As such, there are many great ideas coming to the fore right now. In this case, the development of a solid-state power block coupled with incredibly high storage temperatures pushes the boundaries of what’s possible.”

Source: MIT

Comments